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For f in L 1[0, 1], let Jl1UIM) be the set of all best L 1-approximations to f by
nondecreasing functions, letf= inf Jl1UIMJ and let/= sup Jl1UIM). We show that
Jl1 UIM) is compact in L 1 and provide a description of the elements of IIIUIM) and
of its extreme points in terms of [ and J ,;;;:, 1986 Academic Press, inc.

Let Q = [0, 1], fl = Lebesgue measure on Q and ~ = the set of Lebesgue
measurable subsets of Q. Let L 1 = LI(Q, ~,fl) and let fin L I be fixed. If jB

is a sub sigma lattice of ~ (i.e., IB contains ,p, Q, and countable unions and
intersections of elements of m) and B is the set of all IB-measurable
functions, a function g in B is a best L I-approximation to I by elements of
B if, for every h in B,

III - gill ~ Ilf -hl!I'

Let IIIUIB) denote the set of all best L capproximations to f by elements of
B; let!= inf IlIUIB) and]= sup flIUIB). If IB is also a sigma algebra, then
IlIUIB) can be characterized as follows (see [3, Theorem 2J): g is in
IlIUIB) if and only if g is in B andf~ g~J A more general problem is to
characterize flIUIB) when IB is an arbitrary sigma lattice. In attacking this
problem, we have considered a particular lattice, which underlies the
theory of isotonic approximation.

Let 9Jl be the collection of all intervals of the fonn [a, 1J or (a, 1],°~ a ~ 1. Then a function g is 9Jl-measurable if and only if g is nondecreas
ing on Q. Let M be the set of 9Jl-measurable (nondecreasing) functions. By
[2, Lemma 3], flIUIM) is nonempty. Clearly flIUIM) is L,-closed and
convex. The purpose of this note is the description of IlIUIM) (Theorem 8)
and of its extreme points (Theorem 9).
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For x in Q and (j > 0, let B(x, (j) = (x - (j, x + (j) n Q. If S is in ~ and Q
is a nondegenerate interval in Q, let fl(S; Q) denote the relative measure of
Sin Q, i.e., fl(S; Q) = fl(S n Q)/flQ. If S is in ~, then a point p in (0, 1) is
said to be a point of density of S if

lim fl(S; B(p, (j)) = 1.
b!O

A function g is said to be approximately continuous at p in (0, 1) if, for any
open set G containing g(p), p is a point of density of the set g -1 (G).

LEMMA 1. Let g E fllUIM). If f is approximately continuous at y and
g( y) l' f( y), then g is constant on a neighborhood of y.

Proof Suppose y is in (0, 1), g(y) l' f(y) and Lemma 1 is false at y.
Suppose f( y) - g( y) = 28 > 0. (If f( y) < g( Y), the proof is similar.) Since g
is not constant at y, either x> y => g(x) > g(y) or x < y => g(x) < g(y). In
either case we obtain a contradiction by constructing a nondecreasing
function ¢J with Ilf - ¢JIll < Ilf - gill' In the first case, ¢J is obtained by rais
ing g on an interval containing y. Sincefis approximately continuous at y,
there exists (J >°such that, for 0< r < (J,

fl([f>f(Y)-8]; B(y,r))>3/4. (1)

Let z=min{Y+(J, inf{x: g(x);?:g(Y)+8}} and let 1] = min{8,
g(z+)-g(y-)}, where g(x+)=lim l !x g(t) and g(x-) is defined
similarly. Define ¢J in M by

¢J(x) = g(x) + 1],

= g(z+ ),

= g(x),

XE(y-(J,y),

XE [y, z],

X$(y-(J,z].

By (1), fl([f> f(Y)-8]; I»! for 1= (y-(J, y) and for I=(y, z). Thus,

f I¢J- fl <f Ig- fl
I I

for 1= (y - (J, y) and for 1= (y, z). Thus ¢J is Lccloser to fthan is g.
In the second case, a better Ll-approximation is produced by lowering g

on an interval of the form (z, y + (J]. When y = °or 1, a similar argument
applies. This concludes the proof of Lemma 1.

COROLLARY 2. Let gE flIUIM). Then Q is the disjoint union of subsets
E and F where, for almost every y in E, g( y) = f( y) and for each y in F, g is
constant on a neighborhood of y.
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Proof Since f is measurable, f is approxim~tely continuous almost
everywhere [1, II.5.2]. Let G be the exceptional set, E = [f = g] u G and
F = Q - E. Lemma 1 then shows that F has the desired property.

We will say that a function h: Q ---+ IR is constant at s if there exists J > 0
such that h is constant on B(s, 6).

LEMMA 3. Let gEPIUIM). Ifg is not constant at s in Q. then

p([f < g]; [s, t]) ~!, s<t~l (2)

and

p([f>g]; [t,s])~~, O~ t <so (3 )

Furthermore,

p([f>g]; [s, l])~! for any s in [0, 1) (4 )

and

p( [f < g]; [0, t]) ~! for any tin (0,1]. r<;"
\-,J

Proof Suppose (2) fails. As in the proof of Lemma 1, we will construct
a function rjJ in M which is L[-closer to f than is g. The negation of (2)
entails the existence of sand t such that 0 ~ s < t ~ 1 and g is not constant
at s, but p( [f< g]; [s, t]) >!- Since [f< g] is the limit of the increasing
sequence of sets {[f < g - lin]. n;::' I}, there exist 11' in Nand 6> 0 such
that

p([f < g-lln'] n [s, t]) > (t-s)/2+ 2b.

Since g is not constant at s, there exist u, v and n" such that u ~ 5 < v,
v-u<b and g(v)-l/n";::' g(u). Let v=min{l/n', lin"} and define ¢J:
Q ---+ IR by

rjJ(x) = min{g(x), g(v) - v},

= g(x)- v,

XE[U,V],

.YE(V,t].

and r/J = g on Q - [u, t]. Then rjJ is nondecreasing and

~r Ig- fl +vJ
u

+ r' Ig-fl-v[(t-s)/2+6] +v[(t-s)/2-2b]
'v

~rIg- fl-2vb.
u
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Thus r/J is a better LI-approximation to f than is g, a contradiction. That
(3), (4), and (5) hold is proven similarly. This concludes the proof of
Lemma 3.

Let[=inf PI(JIM) andj=sup PI(JIM). By [2, Lemma3],[andjare
in PI (JIM). Items (4) and (5) of Lemma 3 (with s = °and t = 1) imply the
following:

COROLLARY 4. If gEPI(JIM), then P[f>g]~1 and p[f<g]~1

Consequently p[f~ j] ~ 1, p[f~[] ~1and p[f <f<j] = 0.

THEOREM 5. If j (resp. [) is constant on (a, b) c Q, then there exists a
disjoint sequence {(ai' bJ: i ~ 1} of subintervals of (a, b) such that [(resp. J)
is constant on each (ai' bi) and P[Ui~1 (ai' bJ] =b-a.

Proof Suppose without loss of generality that j is constant on (a, b)
and not constant at a. Let E be the set of all points in (a, b) at which [ is
not constant. If pE>O, then, by the Lebesgue Density Theorem [1,11.5.1],
there exists yin E such \that y is a pointl of density of E. If[(y+ ) = j(y),
then there exists 15 >°such that [is constant on (y, y + b), which con
tradicts the choice of y. Thus[( y +)< j( y), so there exist c and din E such
that c < y < d, [(d) <j(d) and p(E; [y, d]) > 1-

Let II = (a, y) and 12 = (a, d). Lemma 3 implies that, for i = 1, 2,
p([f~j]; IJ~1 and p([f~f]; IJ~1· Since f<j on (a, d) and
p[f<f<fJ = 0, p( [f ~[]; IJ;;" 1, i = 1, 2, so p( [/~[]; [y, d]) = 1·

In view of Corollary 2 and Theorem 5, we can state an initial charac
terization of PI(JIM): Let Ube the set of points at which [and j are both
constant and unequal. Then U is an open set and [(y) = j(y) for almost
every y in Q- U. Thus we will have characterized PI(JIM) if we can
describe the behavior of an arbitrary gE PI(JIM) on an arbitrary com
ponent of U. To this end, define h: Q --+ IR by

h(x) = 1,

= -1,

=0,

[(x) <J(x) ~f(x),

f(x) ~[(x)<j(x),

otherwise,

and let k(x) = J~ h(t) dt. Then h(x) = °almost everywhere on Q - U and
for any component (u,v) of U, J:; h(t)dt=O. Hence [h=O]:::>Q-u.
Furthermore, we have

LEMMA 6. The set [k = 0] n U has measure zero.

Proof Suppose y E U is a point of density of [f ~ j]. Then there exists
15 > °such that

p( [f~ j]; I) > 1 (6)
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for every interval I which contains y and is contained in B(y, b). If y is also
a point of density of [k = OJ, then there exist z and w such that y - b < z <
y<w<y+b and k(z)=k(w)=O. Thus t h(t) dt=O. But (6) implies that
J~' h(t) dt>O. Thus [f~fJ and [k=OJ have no common density points.
Similarly, [f ";;fJ and [k = OJ have no common density points. Since
almost every x in Q is a density point of [f~fJ or of [f ,,;;/J, the
measure of the set of density points of [k = OJ is zero, i.e., J1[k = 0] = O.

Since k is continuous, [k # OJ is an open set. Let V = Un [k # 0]. Our
characterization of J11(fIM) focuses on the components of V.

THEOREM 7. If g E J1 dfl M) and k is defined as above, then g is constant
on each component of [k # 0].

Proof Suppose g is not constant at y, where z < y < H' and (z, wi is a
component of [k # OJ such that (z, 11') is contained in the component (u, v)
of U. Then (3) in Lemma 3 implies that

(7)

If equality holds ill (7), then S:h(t)dt=O so k(y)=O, a contradiction.
Since k(z) = 0,

J1( [f ,,;; [J; [u, zJ)= !

so

J1([f,,;;fJ; [u, YJ»~,

which contradicts (2) in Lemma 3. This establishes Theorem 7.

The following theorem is a summary of our characterization of J11 UlM).

THEOREM 8. Iff ELI, then gEJ1I(fIM) if and only ifgEM,f";; g,,;;j, g
is constant on each component of V and, for almost every x in Q - V,
g(x) = f(x).

Another way to characterize 1l1(fIM) is by means of its extreme points.
We have noted above that 1l1(fIM) is convex. Thus, if we can also show
that J1[UIM) is compact, the Krein-Milman Theorem will assert that
J1IUIM) is the closed convex hull of its extreme points. To see that it is
compact, let {(an, f3n): n ~ 1} be the set of components of V and, for any g
in J1IU!M) and n ~ I, let gn be the value of g on (an, f3n)' Suppose {g"':
m ~ 1} is a sequence in J1IUIM). Sincefandfare integrable, it is necessary
that {g~': 111 ~ 1} is bounded for each n;; 1. Thus, there exists a sub
sequence {gm.l} of {gm} such that {gr· 1 = (g""I)d converges and, for each
k ~ 1, there exists a subsequence {gm.k+ I} of {g""k} such that {gZ'{';t-l}



90 HUOTARI, MEYEROWITZ AND SHEARD

converges. Then the subsequence {gl,l, g2,2, g3,3, ... } of {gm} converges at
every point of V. Since f = f = f almost everywhere on Q - V, {gm} con
verges almost everywhere. Clearly gO = lim gm is nondecreasing and, by the
Lebesgue Convergence Theorem, gO is in /11 (fl M) and II gm - g0111 --+ O.

THEOREM 9. Let f ELI' A function g in /11 (fl M) is an extreme point of
/11(f\M) if and only if, for any n ~ 1,

(8)

Proof The condition is sufficient. Indeed, suppose that hand k are in
/11(fIM) and g=ph+(I-p)k, O<p<1. If gm=fm or gm=f"" and hm
and k m are distinct from gm, then either hm or k m is excluded from
[fm, fm]' a contradiction. Thus hm= k m= gm, so hn= k n= gn whenever gn
is- a limit point of {gm: gm = fm or fm}' Since h = k = f almost everywhere
on Q - V, the three functions are equivalent, i.e., g is an extreme point.

Conversely, suppose that there exists n such that gn does not satisfy (8).
Let (a, 13) be the largest open interval on which g = g n'

Suppose first that g is continuous at rt. and at 13. By the negation of (8),
there exists 17> 0 such that for any m ~ 1, fm and fm are excluded from
B(gn, bJ). Choose z > 13 and IV < a so that

0< g(z) - g(f3) = £2 ~ 1]

and

o< g( rt.) - g(w) = £ I ~ 1].

gU(x) = g(x) + G(g(x) - g(w»/(g(rt.) - g( w», x E (W, rt.),

= g(x) + £, X E [rt., 13],

= g(x) + £(g(z) - g(x »/(g(z) - g(f3»), x E (13, z),

= g(x), x ¢ (w, z).

Define gl similarly, with each addition replaced by a subtraction. Since g" is
constant exactly where g is constant and /1[g < f < g"] = 0, II g" - fill =

Ilg - fill, so gU is in /11(fIM). Similarly, gl E /11(fIM). Since g = (gU + l)/2,
g is not an extreme point of /11(fIM).

If g is discontinuous at a, choose £ < min {g(a+ )- g(a - ), 1]}, let IV = rt.
and define gU and gl as before. (The first line in the above definition of gU is
now vacuous.) If g is discontinuous at 13, similar changes are made.
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